Nonparametric Regression With Missing Outcomes Using Weighted Kernel Estimating Equations.
نویسندگان
چکیده
We consider nonparametric regression of a scalar outcome on a covariate when the outcome is missing at random (MAR) given the covariate and other observed auxiliary variables. We propose a class of augmented inverse probability weighted (AIPW) kernel estimating equations for nonparametric regression under MAR. We show that AIPW kernel estimators are consistent when the probability that the outcome is observed, that is, the selection probability, is either known by design or estimated under a correctly specified model. In addition, we show that a specific AIPW kernel estimator in our class that employs the fitted values from a model for the conditional mean of the outcome given covariates and auxiliaries is double-robust, that is, it remains consistent if this model is correctly specified even if the selection probabilities are modeled or specified incorrectly. Furthermore, when both models happen to be right, this double-robust estimator attains the smallest possible asymptotic variance of all AIPW kernel estimators and maximally extracts the information in the auxiliary variables. We also describe a simple correction to the AIPW kernel estimating equations that while preserving double-robustness it ensures efficiency improvement over nonaugmented IPW estimation when the selection model is correctly specified regardless of the validity of the second model used in the augmentation term. We perform simulations to evaluate the finite sample performance of the proposed estimators, and apply the methods to the analysis of the AIDS Costs and Services Utilization Survey data. Technical proofs are available online.
منابع مشابه
Local linear regression for generalized linear models with missing data
Fan, Heckman and Wand (1995) proposed locally weighted kernel polynomial regression methods for generalized linear models and quasilikelihood functions. When the covariate variables are missing at random, we propose a weighted estimator based on the inverse selection probability weights. Distribution theory is derived when the selection probabilities are estimated nonparametrically. We show tha...
متن کاملA comparison study of nonparametric imputation methods
Consider estimation of a population mean of a response variable when the observations are missing at random with respect to the covariate. Two common approaches to imputing the missing values are the nonparametric regression weighting method and the Horvitz-Thompson (HT) inverse weighting approach. The regression approach includes the kernel regression imputation and the nearest neighbor imputa...
متن کاملEmpirical Likelihood for Estimating Equations with Missing Values
We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide-ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...
متن کاملNonparametric Imputation of Missing Values for Estimating Equation Based Inference
We consider an empirical likelihood inference for parameters defined by general estimating equations when some components of the random observations are subject to missingness. As the nature of the estimating equations is wide ranging, we propose a nonparametric imputation of the missing values from a kernel estimator of the conditional distribution of the missing variable given the always obse...
متن کاملRobust nonparametric kernel regression estimator
In robust nonparametric kernel regression context,weprescribemethod to select trimming parameter and bandwidth. Through solving estimating equations, we control outlier effect through combining weighting and trimming. We show asymptotic consistency, establish bias, variance properties and derive asymptotics. © 2016 Elsevier B.V. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Statistical Association
دوره 105 491 شماره
صفحات -
تاریخ انتشار 2010